Муниципальное казенное общеобразовательное учреждение «Сухоборская средняя общеобразовательная школа»

Рассмотрено на заседании МС *Имеоф* Г.В.Иксанова протокол №1 от 27.08.2020 г. Согдасовано ЗДУВР Ди Л.В.Кондратьева Утверждаю Директор школы Е.А.Ваулина от 31,08.2020 Приказ №142

Рабочая программа по учебному предмету «Информатика»

7-9 класс

Составитель: Глинская Н.А. учитель информатики первая категория

Пояснительная записка

Рабочая программа учебного предмета «Информатика» 7–9 классов разработана в соответствии с нормативными документами:

- требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО);
- основной образовательной программы основного общего образования;
- примерной программы основного общего образования по информатике;
- авторской программы по информатике Босовой Л.Л. (Информатика. Программы для общеобразовательных организаций: 2–11 классы. Учебное издание / Авторсоставитель: М. Н. Бородин.-М.: БИНОМ. Лаборатория знаний.);

Рабочая программа осуществляется по учебно-методическому комплексу по информатике в 7-9 классах под редакцией Л.Л.Босовой.

Цель реализации программы:

достижение обучающимися результатов изучения учебного предмета «Информатика» в соответствии с требованиями, утвержденными Федеральным государственным образовательным стандартом основного общего образования.

Задачами реализации программы учебного предмета являются:

- обеспечение в процессе изучения предмета условий для достижения планируемых результатов освоения основной образовательной программы основного общего образования всеми обучающимися;
- создание в процессе изучения предмета условий для:
 - развития личности, способностей, удовлетворения познавательных интересов, самореализации обучающихся, в том числе одаренных;
 - формирования ценностей обучающихся, основ их гражданской идентичности и социально-профессиональных ориентаций;
 - формирования у обучающихся опыта самостоятельной учебной деятельности;
 - формирования у обучающихся навыков здорового и безопасного для человека и окружающей его среды образа жизни;
- знакомство учащихся с методами научного познания и методами исследования объектов и явлений, понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Учебный предмет «Информатика» входит в предметную область «Математика и информатика», является обязательным для изучения.

Согласно учебному плану на изучение отводится 102 часа: по 1 часу в неделю - 34 часа в 7 классе, 34 часа в 8 классе и 34 часа в 9 классе, 102 часа за три года обучения.

Планируемые результаты освоения учебного предмета «Информатика»

Программа предполагает достижение выпускниками следующих личностных, метапредметных и предметных результатов.

Планируемые **личностные результаты** освоения учебного предмета «Информатика»:

- Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- Формирование нравственных чувств и нравственного поведения,

осознанного и ответственного отношения к собственным поступкам. Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде.

- Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания. Сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности.

Планируемые **метапредметные результаты** освоения учебного предмета «Информатика»: включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования.

При изучении учебного предмета «Информатика» обучающиеся усовершенствуют приобретённые на первом уровне навыки работы с информацией и пополнят их. Они смогут работать стекстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свёртывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядносимволической форме (в виде таблиц, графических схем и диаграмм, карт понятий концептуальных диаграмм, опорных конспектов);
- развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

В соответствии ФГОС ООО выделяются три группы **универсальных учебных** действий: регулятивные, познавательные, коммуникативные.

Регулятивные УУД

- 1. Умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Таким образом, в качестве планируемых метапредметных результатов возможен, но не ограничивается следующим, список того, что обучающийся сможет:
 - анализировать существующие и планировать будущие образовательные результаты;
 - идентифицировать собственные проблемы и определять главную проблему;
 - выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
 - ставить цель деятельности на основе определенной проблемы и существующих возможностей;

- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновываялогическую последовательность шагов.
 - 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять действие(я) в соответствии с учебной и познавательной задачей, составлять алгоритм действий в соответствии с учебной и познавательной задачей;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной ипознавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательностьшагов).
 - 3.Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- планировать и корректировать свою индивидуальную образовательную траекторию;
- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

Познавательные УУД

- 1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы. Обучающийся сможет:
- подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
- выстраивать логическую цепь ключевого слова и соподчиненных ему слов;
- выделять признак двух или нескольких предметов или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- выделять явление из общего ряда других явлений;

- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- 2. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
 - обозначать символом и знаком предмет и/или явление;
 - определять логические связи между предметами и/или явлениями, обозначать данные логическиесвязи с помощью знаков в схеме;
 - создавать абстрактный или реальный образ предмета и/или явления;
 - строить модель/схему на основе условий задачи и/или способа решения задачи;
 - создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
 - преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
 - строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритмна основе имеющегося знания об объекте, к которому применяется алгоритм.
- 3. Смысловое чтение. Обучающийся сможет:
 - находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
 - ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
 - устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
 - резюмировать главную идею текста; преобразовывать текст;
 - критически оценивать содержание и форму текста.

Коммуникативные УУД

1.Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:

- определять возможные роли в совместной деятельности;
- играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точкузрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовалипродуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной передгруппой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятиемсо стороны собеседника задачи, формы или содержания диалога.
- 2.Умение осознанно использовать речевые средства в соответствии с задачей

коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:

- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми;
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи и регламент в монологе и дискуссии в соответствии скоммуникативной задачей;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоковсвоего выступления.
- 3. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий.

Обучающийся сможет:

- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ:
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
- использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Планируемые **предметные результаты** освоения учебного предмета «Информатика»:

Выпускник научится:

- различать содержание основных понятий предмета: информациа, информационный процесс, информационная система, информационная модель и др;
- различать виды информации по способам её восприятия человеком и по способам еёпредставления на материальных носителях;
- раскрывать общие закономерности протекания информационных процессов в системах различнойприроды;
- приводить примеры информационных процессов процессов, связанные с хранением, преобразованием и передачей данных в живой природе и технике;
- классифицировать средства ИКТ в соответствии с кругом выполняемых задач;
- узнает о назначении основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств вводавывода), характеристиках этих устройств;

- определять качественные и количественные характеристики компонентов компьютера;
- описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
- кодировать и декодировать тексты по заданной кодовой таблице;
- оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту;
- определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;
- записывать логические выражения составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;
- составлять алгоритмы для решения учебных задач различных типов;
- выражать алгоритм решения задачи различными способами (словесным, графическим, в том числеи в виде блок-схемы, с помощью формальных языков и др.);
- определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач(словесный, графический, с помощью формальных языков);
- определять результат выполнения заданного алгоритма или его фрагмента;
- использовать термины «исполнитель», «алгоритм», «программа», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;
- выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- составлять несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять эти программы на компьютере;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
- разбираться в иерархической структуре файловой системы;
- осуществлять поиск файлов средствами операционной системы;
- использовать динамические (электронные) таблицы, в том числе формулы с

- использованиемабсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание;
- анализировать доменные имена компьютеров и адреса документов в Интернете;
- проводить поиск информации в сети Интернет по запросам с использованием логических операций.

Выпускник получит возможность:

возникающие при передаче информации.

- осознано подходить к выбору ИКТ средств для своих учебных и иных целей;
- узнать о физических ограничениях на значения характеристик компьютера;
- познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах;
- познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов;
- ознакомиться с влиянием ошибок измерений и вычислений на выполнение алгоритмов управления реальными объектами (на примере учебных автономных роботов); узнать о наличии кодов, которые исправляют ошибки искажения,
- создавать программы для решения задач, возникающих в процессе учебы и вне
- познакомиться с задачами обработки данных и алгоритмами их решения;
- узнать о данных от датчиков, например, датчиков роботизированных устройств;
- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
- познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете.

7 класс

1. Информация и информационные процессы (3 часа)

Информация – одно из основных обобщающих понятий современной науки.

Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой и информация как сведения, предназначенные для восприятия человеком.

Примеры данных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.

Информационные процессы – процессы, связанные с хранением, преобразованием и передачей данных.

2. Работа в информационном пространстве. Информационно-коммуникационные технологии (2 часа)

Компьютерные сети. Интернет. Адресация в сети Интернет. Доменная система имен. Сайт. Сетевое хранение данных. Большие данные в природе и технике (геномные данные, результаты физических экспериментов, Интернет-данные, в частности, данные социальных сетей). Технологии их обработки и хранения.

3. Тексты и кодирование (4 часа)

Символ. Алфавит — конечное множество символов. Текст — конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.

Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.

Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.

Двоичные коды с фиксированной длиной кодового слова. Разрядность кода – длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.

Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т. д.

Практические работы:

- 1. Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.
 - 2. Количество информации, содержащееся в сообщении.

Контрольная работа № 1 «Информация и процессы»

4. Компьютер – универсальное устройство обработки данных (4 часа)

Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).

Программное обеспечение компьютера.

Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. *Носители информации в живой природе*.

Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров.

Параллельные вычисления.

Техника безопасности и правила работы на компьютере.

5. Файловая система (2 часа)

Принципы построения файловых систем. Каталог (директория). Типы файлов.

Характерные размеры файлов различных типов (страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файл данных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Файловый менеджер.

Практические работы:

- 3. Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление.
 - 4. Поиск в файловой системе. Архивирование и разархивирование.

Контрольная работа № 2 «Компьютер – универсальное устройство обработки данных»

6. Подготовка текстов и демонстрационных материалов (13 часов)

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ).

Текстовый процессор – инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование.

История изменений.

Проверка правописания, словари.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Понятие о системе стандартов по информации, библиотечному и издательскому делу. Деловая переписка, учебная публикация, коллективная работа. Реферат и аннотация.

Знакомство с графическими редакторами.

Средства компьютерного проектирования. Чертежи и работа с ними. Базовые операции: выделение, объединение, геометрические преобразования фрагментов и компонентов.

Практические работы:

- 5. Включение в текстовый документ списков, таблиц, и графических объектов.
- 6. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др.
 - 7. Подготовка компьютерных презентаций.
 - 8. Включение в презентацию аудиовизуальных объектов.
- 9. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка, поворот, отражение.
- 10. Операции редактирования графических объектов: работа с областями (выделение, копирование, заливка цветом), коррекция цвета, яркости и контрастности.

7. Дискретизация (3 часа)

Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.

Кодирование цвета. Цветовые модели. Модели RGB и CMYK. *Модели HSB и CMY*. Глубина кодирования. Знакомство с растровой и векторной графикой.

Кодирование звука. Разрядность и частота записи. Количество каналов записи.

Практические работы:

11. Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.

Контрольная работа за курс 7 класса (1 час)

8 класс

1. Системы счисления (6 часов)

Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.

Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления, запись целых чисел в пределах от 0 до 1024.

Восьмеричная и шестнадцатеричная системы счисления.

Практические работы:

- 1. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.
- 2. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно.
- 3. Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Контрольная работа№1 «Системы счисления» (1 час)

2. Элементы комбинаторики, теории множеств и математической логики (9 часов) Множество.

Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.

Таблицы истинности.

Логические операции следования (импликация) и равносильности (эквивалентность). Свойства логических операций. Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики.

Практические работы:

- 5. Построение таблиц истинности для логических выражений.
- 6. Расчет количества вариантов: формулы перемножения и сложения количества вариантов.
- 7. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.

Контрольная работа №2 «Элементы комбинаторики» (1 час)

3. Исполнители и алгоритмы. Управление исполнителями (6 часов)

Исполнители. Состояния, возможные обстановки и система команд исполнителя; команды-приказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя. Ручное управление исполнителем.

Алгоритм как план управления исполнителем (исполнителями). Алгоритмический язык (язык программирования) — формальный язык для записи алгоритмов. Программа — запись алгоритма на конкретном алгоритмическом языке. Компьютер — автоматическое устройство, способное управлять по заранее составленной программе исполнителями, выполняющими команды. Программное управление исполнителем.

Словесное описание алгоритмов. Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ.

Управление. Сигнал. Обратная связь.

Практические работы:

8. Описание алгоритма с помощью блок-схем.

4. Алгоритмические конструкции (13 часов)

Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление». Условный оператор: полная и неполная формы.

Выполнение и невыполнения условия (истинность и ложность высказывания). Простые и составные условия. Запись составных условий.

Конструкция «повторения»: циклы с заданным числом повторений, с условием выполнения, с переменной цикла.

Примеры записи команд ветвления и повторения и других конструкций в

различных алгоритмических языках.

Практические работы:

- 9. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.
 - 10. Запись алгоритмических конструкций в выбранном языке программирования.
- 11. Запись алгоритмических конструкций в выбранном языке программирования Контрольная работа за курс 8 класса. (1 час)

9 класс

1. Математическое моделирование (3 часа)

Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической модели от натурной модели и от словесного (литературного) описания объекта. Использование компьютеров при работе с математическими моделями.

Компьютерные эксперименты.

Практические работы:

1. Примеры использования математических (компьютерных) моделей при решении научно-технических задач.

2. Списки, графы, деревья (3 часа)

Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе. Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

Дерево. Корень, лист, вершина (узел). Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. *Бинарное дерево. Генеалогическое дерево*.

Практические работы:

2. Решение задач по теории графов, деревьев.

3. Базы данных. Поиск информации (3 часа)

Базы данных. Таблица как представление отношения.

Средства и методика поиска информации. Построение запросов; браузеры. Поиск информации в сети Интернет. Компьютерные энциклопедии и словари. Компьютерные карты и другие справочные системы. *Поисковые машины*.

Практические работы:

3. Поиск данных в готовой базе.

4. Разработка алгоритмов и программ (13 часа)

Оператор присваивания. Представление о структурах данных.

Константы и переменные. Переменная: имя и значение. Типы переменных: целые, вещественные, *символьные, строковые, логические*. Табличные величины (массивы). Одномерные массивы. *Двумерные массивы*.

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Простейшие приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Знакомство с документированием программ.

Практические работы:

- 4. Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежник и др.
 - 5. Знакомство с алгоритмами решения задач. Реализации алгоритмов в выбранной

среде программирования. (2 часа)

- 6. Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами. (2 часа)
- 7. Обработка целых чисел, представленных записями в десятичной и двоичной системах счисления, нахождение наибольшего общего делителя (алгоритм Евклида).
 - 8. Составление описание программы по образцу.

5. Анализ алгоритмов (3 часа)

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объема данных; примеры коротких программ, выполняющих обработку большого объема данных.

Примеры описания объектов и процессов с помощью набора числовых характеристик, а также зависимостей между этими характеристиками, выражаемыми с помощью формул.

Практические работы:

9. Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату.

Контрольная работа №1 «Разработка алгоритмов и программ» (1 час)

6. Робототехника (2 часа)

Робототехника — наука о разработке и использовании автоматизированных технических систем. Автономные роботы и автоматизированные комплексы. Микроконтроллер. Сигнал. Обратная связь: получение сигналов от цифровых датчиков (касания, расстояния, света, звука и др.

Примеры роботизированных систем (система управления движением в транспортной системе, сварочная линия автозавода, автоматизированное управление отопления дома, автономная система управления транспортным средством и т.п.).

Автономные движущиеся роботы. Исполнительные устройства, датчики. Система команд робота. Моделирование робота парой: исполнитель команд и устройство управления. Ручное и программное управление роботами.

Пример учебной среды разработки программ управления движущимися роботами. Алгоритмы управления движущимися роботами.

Влияние ошибок измерений и вычислений на выполнение алгоритмов управления роботом.

Практические работы:

- 10. Конструирование робота.
- 11. Анализ алгоритмов действий роботов. Испытание механизма робота.

7. Электронные (динамические) таблицы (4 часа)

Электронные (динамические) таблицы.

Практические работы:

- 12. Формулы с использованием абсолютной, относительной и смешанной адресации.
 - 13. Преобразование формул при копировании.
- 14. Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.

8. Работа в информационном пространстве. Информационно-коммуникационные технологии (з часа)

Виды деятельности в сети Интернет.

Компьютерные вирусы и другие вредоносные программы; защита от них.

Проблема подлинности полученной информации. Электронная подпись,

сертифицированные сайты и документы. Методы индивидуального и коллективного размещения новой информации в сети Интернет. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция и др.

Гигиенические, эргономические и технические условия эксплуатации средств ИКТ. Экономические, правовые и этические аспекты их использования. Личная информация, средства ее защиты. Организация личного информационного пространства.

Основные этапы и тенденции развития ИКТ. Стандарты в сфере информатики и ИКТ. Стандартизация и стандарты в сфере информатики и ИКТ докомпьютерной эры. **Практические работы:**

- 15. Интернет сервисы: почтовая служба; справочные службы, поисковые службы, службы обновления программного обеспечения и др.
- 16. Приемы, повышающие безопасность работы в сети Интернет. Контрольная работа за курс 9 класса (1 ч.)

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

7 класс

		Количество часов		
	Тема	Всего	Практика	Контроль
1	Информация и информационные процессы	3		
2	Работа в информационном пространстве.	2		
	Информационно-коммуникационные			
	технологии.			
3	Тексты и кодирование	4	1	1
4	Компьютер универсальное средство	4	6	
	обработки данных			
5	Файловая система	3	2	1
6	Подготовка текстов и демонстрационных	13	6	
	материалов			
7	Дискретизация	4	1	1
8	Зачётное занятие за курс 7 класса	1		1
	ИТОГО:	34	16	4

8 класс

No	Тема	Количество часов		
		Всего	Практика	Контроль
1	Системы счисления	6	3	1
2	Элементы комбинаторики, теории множеств и математической логики	9	4	1
3	Исполнители и алгоритмы. Управление исполнителями	6	1	
4	Алгоритмические конструкции	12	3	
6	Контрольная работа за курс 8 класса	1		1
	ИТОГО:	34	11	4

9 класс

№	Тема	Количество часов		
	T CITE	Всего	Практика	Контроль
1	Математическое моделирование	3	1	
2	Списки, графы, деревья	3	1	
3	Базы данных. Поиск информации	3	1	
4	Разработка алгоритмов и программ	13	7	
5	Анализ алгоритмов	3	1	1
6	Робототехника	2	2	
7	Электронные (динамические) таблицы	4	3	
8	Работа в информационном пространстве. Информационно-коммуникационные технологии	2	2	
9	Итоговое тестирование	1		1
	итого:	34	19	2